Spatiotemporal short-term traffic forecasting using the network weight matrix and systematic detrending
نویسندگان
چکیده
منابع مشابه
Short-Term Traffic Forecasting Using Self-Adjusting k-Nearest Neighbours
Short-term traffic forecasting is becoming more important in intelligent transportation systems. The k-nearest neighbours (kNN) method is widely used for short-term traffic forecasting. However, the self-adjustment of kNN parameters has been a problem due to dynamic traffic characteristics. This paper proposes a fully automatic dynamic procedure kNN (DP-kNN) that makes the kNN parameters self-a...
متن کاملShort-term Traffic Flow Forecasting Using Dynamic Linear Models
Intelligent Transportation Systems (ITS) is an emerging concept which has been utilised to improve efficiency and sustainability of existing transportation systems. Short term traffic flow forecasting, the process of predicting future traffic conditions based on historical and realtime observations is an essential aspect of ITS. The existing well-known algorithms used for short-term traffic for...
متن کاملShort Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study
Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...
متن کاملpattern-based short-term traffic forecasting for urban heterogeneous conditions
short-term traffic flow forecasting plays a significant role in the intelligent transportation systems (its), especially for the traffic signal control and the transportation planning research. two mainly problems restrict the forecasting of urban freeway traffic parameters. one is the freeway traffic changes non-regularly under the heterogeneous traffic conditions, and the other is the success...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transportation Research Part C: Emerging Technologies
سال: 2019
ISSN: 0968-090X
DOI: 10.1016/j.trc.2019.04.014